233 research outputs found

    Differences on social acceptance of humanoid robots between Japan and the UK

    Get PDF
    Held at AISB'15 ConventionTo validate a questionnaire for measuring people's acceptance of humanoid robots in cross-cultural research (the Frankenstein Syndrome Questionnaire: FSQ), an online survey was conducted in both the UK and Japan including items on perceptions of the relation to the family and commitment to religions, and negative attitudes toward robots (the NARS). The results suggested that 1) the correlations between the FSQ subscale scores and NARS were sufficient, 2) the UK people felt more negative toward humanoid robots than did the Japanese people, 3) young UK people had more expectation for humanoid robots, 4) relationships between social acceptance of humanoid robots and negative attitudes toward robots in general were different between the nations and generations, and 5) there were no correlations between the FSQ subscale scores, and perception of the relation to the family and commitment to religions.Final Accepted Versio

    The Relationship between the Efficacy of Tonsillectomy and Renal Pathology in the Patients with IgA Nephropathy

    Get PDF
    Objective. The aim of this study was to evaluate the effects of tonsillectomy as a treatment for IgA nephropathy in relation to renal pathological findings. Methods. This is a retrospective analysis of 13 patients having IgA nephropathy treated by tonsillectomy. Results. UP/UCre levels decreased from 820.8 to 585.4 one month postsurgery and then showed slight worsening to 637.3 at the most recent follow-up. There was no significant difference in the improvement rate between pathological grades I–III and IV. There was positive correlation between Pre-UP/UCre level and the reduction rate of UP/UCre, which was statistically significant (R = 0.667, R2 = 0.445, and P=0.01). Conclusions. Reduction of UP/UCre at one month postsurgery is considered to be an overall prognostic factor, and tonsillectomy is considered to be an effective therapy for IgA patients regardless of the grade of renal pathology

    Inhibitory neurons exhibit high controlling ability in the cortical microconnectome

    Get PDF
    脳が安定して活動を続けられるメカニズムの一端を解明 --新皮質で、抑制性細胞は他細胞を制御しやすいトポロジカルな位置取りをする--. 京都大学プレスリリース. 2021-04-09.The brain is a network system in which excitatory and inhibitory neurons keep activity balanced in the highly non-random connectivity pattern of the microconnectome. It is well known that the relative percentage of inhibitory neurons is much smaller than excitatory neurons in the cortex. So, in general, how inhibitory neurons can keep the balance with the surrounding excitatory neurons is an important question. There is much accumulated knowledge about this fundamental question. This study quantitatively evaluated the relatively higher functional contribution of inhibitory neurons in terms of not only properties of individual neurons, such as firing rate, but also in terms of topological mechanisms and controlling ability on other excitatory neurons. We combined simultaneous electrical recording (~2.5 hours) of ~1000 neurons in vitro, and quantitative evaluation of neuronal interactions including excitatory-inhibitory categorization. This study accurately defined recording brain anatomical targets, such as brain regions and cortical layers, by inter-referring MRI and immunostaining recordings. The interaction networks enabled us to quantify topological influence of individual neurons, in terms of controlling ability to other neurons. Especially, the result indicated that highly influential inhibitory neurons show higher controlling ability of other neurons than excitatory neurons, and are relatively often distributed in deeper layers of the cortex. Furthermore, the neurons having high controlling ability are more effectively limited in number than central nodes of k-cores, and these neurons also participate in more clustered motifs. In summary, this study suggested that the high controlling ability of inhibitory neurons is a key mechanism to keep balance with a large number of other excitatory neurons beyond simple higher firing rate. Application of the selection method of limited important neurons would be also applicable for the ability to effectively and selectively stimulate E/I imbalanced disease states

    Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate

    Get PDF
    The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a ‘non-conjugative’ integrative element. To identify active MGEs in a Vibrio ponticus isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between Escherichia coli and Vibrio ponticus. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOBH group, ARGs, and a 13.8-kb integrative element Tn6283. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn6283 integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn6283 copy in the chromosome and that in the newly transferred pSEA1. Tn6283 is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer

    Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate

    Get PDF
    <div><p>The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a ‘non-conjugative’ integrative element. To identify active MGEs in a <i>Vibrio ponticus</i> isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between <i>Escherichia coli</i> and <i>Vibrio ponticus</i>. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOB<sub>H</sub> group, ARGs, and a 13.8-kb integrative element Tn<i>6283</i>. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn<i>6283</i> integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn<i>6283</i> copy in the chromosome and that in the newly transferred pSEA1. Tn<i>6283</i> is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer.</p></div
    corecore